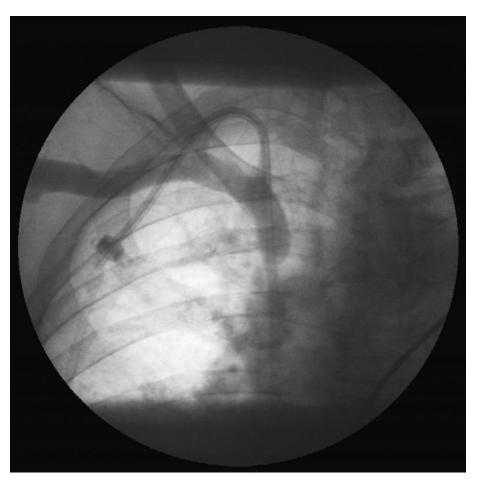
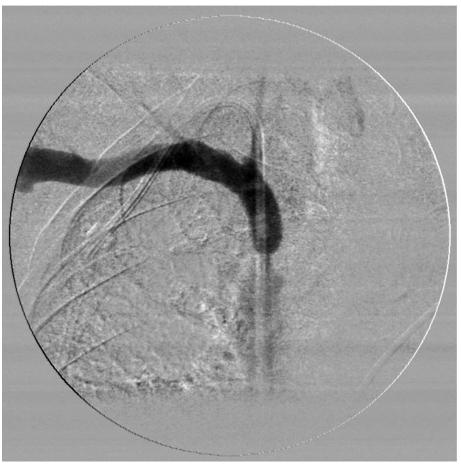
Strategies to Reduce Catheter Use in 2014

Timothy A. Pflederer, MD


Chair, Network 10 MRB


(I have no commercial affiliations or conflicts of interest to report)

Fibrin Sheathing

Central Venous Stenosis

Arm Edema

Infection

Fistula First ... Catheter Last

Catheter Reduction Strategies

- Catheter avoidance
 - Timely placement of the "best" access
 - Urgent start PD
 - Early cannulation grafts
 - Atrium FlixeneTM
 - Gore AcusealTM
- Catheter removal
 - Timely removal of the "worst" access
 - HeRO graft

Decision points

- Fistula First (unless a graft is better)
 - Are we early enough to mature an avf?
 - Will the patient live long enough to benefit from an avf?
- Disciplined follow-up
 - Intervene when failing to mature (6-8wks)
 - Decide when enough is enough
 - Remove catheter after 3 successful cannulations

Timeline (Best case scenarios)

- AVF matures without assistance (40%)
 - − Placement → Use (2 months)
- AVF matures with assistance (60%)
 - Placement → Proc1 → Use (3 months)
 - Placement → Proc1 → Proc2 → Use (4 months)
- AVF fails after salvage attempts (20%)
 - Placement → Proc1 → Proc2 → Fail → Avg → Use
 8wks 4 4 4 3 (6 months)
- AVG
 - Placement → Use (3 weeks)

Urgent Start PD

Useful for patients who crash into dialysis without prior access planning (80%?)

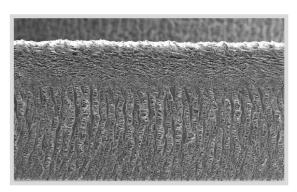
- Place PD catheter instead of TDC
- Initiate low volume/supine PD in hospital
- Continue this in home dialysis unit
- Educate on treatment options
 - Continue PD (complete training)
 - Change to HD (avf/avg then transfer to in-center)

Benefits of urgent start PD

- TDC avoidance
 - Lower infection, hospitalization, mortality
- Immediate Medicare enrollment
 - Payment
 - Hospital, access surgeon, dialysis facility, nephrologist
 - PD training payment
- Effective way to grow home therapies

Early Cannulation Graft

- Patients with urgent dialysis need
 - No fistula option (or graft is felt to be best)
 - Very borderline upper arm fistula option
- Patients with failing fistula or graft
- Graft options/details


FLIXENE™ Vascular Graft

(Atrium product)

Durable Cannulation Zone:

Wall Construction

- Tri-laminate (3 layers)
- 100% PTFE (no additional material added or needed)

Shown To Reduce Common Graft Related Complications

- Reduce Pseudoaneurysms¹
- Reduce Seromas¹
- Higher Rate of Complication Free Patients compared to standard PTFE group⁴

^{1.} Schild AF, Schuman ES, Noicely K, et al. Early cannulation prosthetic graft (Flixene™) for arteriovenous access. J Vasc Access. 2011 Jul-Sep;12(3):248-52

^{2.} Schild AF. et al. New Graft fro Low Friction Tunneling in Vascular Access Surgery, Journal of Vasc Access 2004

^{3.} Scarritt T, Paragone C, O'Gorman R, Kyriazis D, Maltese C, Rostas J. Traditional vs. Early Access Grafts for Hemodialysis Access: A Single Institution Comparative Study.. The American Surgeon, February 2014. pp. 155-158.

Chiang, N, Ria Hulme K, Haggart P, Vasudevan. Comparison of FLIXENE™ and Standard PTFE Arteriovenous Graft For Early Hemodialysis Journal of Vascular Access, 2014

FLIXENE™ Vascular Graft

(Atrium product)

Key Features and Benefits:

- Durable Cannulation Zone:
 - Reduce Pseudoaneurysms¹ (?)
 - Reduce Seromas¹

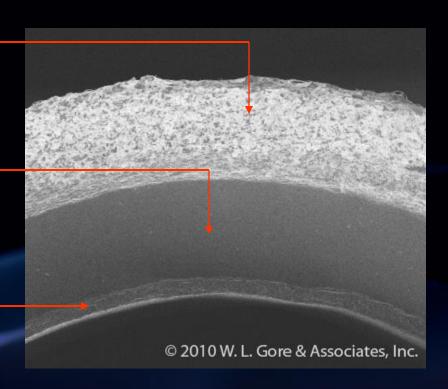
Shown to Reduce Catheter Rates compared to standard PTFE³

- No Additional Steps Required for Early or Standard Cannulation
 - Follow KDOQI guidelines

^{1.} Schild AF, Schuman ES, Noicely K, et al. Early cannulation prosthetic graft (Flixene™) for arteriovenous access. J Vasc Access. 2011 Jul-Sep;12(3):248-52

^{2.} Schild AF. et al. New Graft fro Low Friction Tunneling in Vascular Access Surgery, Journal of Vasc Access 2004

^{3.} Scarritt T, Paragone C, O'Gorman R, Kyriazis D, Maltese C, Rostas J. Traditional vs. Early Access Grafts for Hemodialysis Access: A Single Institution Comparative Study.. The American Surgeon, February 2014. pp. 155-158.

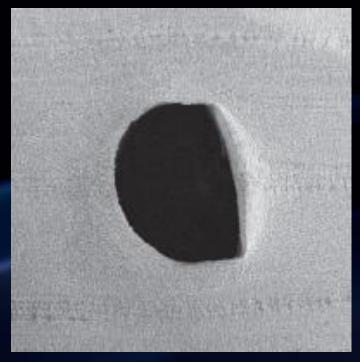

AcusealTM Vascular Graft

(Gore Product)

- Outer Graft Layer
 - Expanded polytetrafluoroethylene

- Middle Graft Layer
 - Elastomeric membrane

- Inner Graft Layer
 - Expanded polytetrafluoroethylene
 - CBAS® Heparin Surface



Tri-Layer Design

Hinders Cannulation Needle Hole Bleeding

Low Bleed versus Bleed

16 gauge cannulation needle hole through GORE® ACUSEAL Vascular Graft luminal surface (left) Standard ePTFE graft luminal surface (right)

Summary ACUSEAL Vascular Graft Clinical Study*

Primary Efficacy Endpoint: Cumulative Patency

2000	GORE® ACUSEAL Vascular Graft	HISTORICAL CONTROL		
6 month follow-up	84%	75%		
12 month follow-up	78%	66% © 2014 W. L. Gore & Associates, Inc.		
Time from Implantation to First Cannulation	Number of GORE® ACUSEAL VASCULAR GRAFTS Cannulated†			
Within 24 Hours	n = 3	0 (22.2%)		
Within 48 Hours	n = 48	3 (35.6%)		
Within 72 Hours	n = 54	4 (40.0%)		
Within 7 Days		0 (51.9%) N. L. Gore & Associates, Inc.		

No difference in hematoma, infections or steal syndrome from standard PTFE graft

Within 28 days of graft implantation, 75.6% of the implanted grafts had been successfully cannulated 3 consecutive times allowing the potential for the CVC to be removed

Early Cannulation Grafts

- Safe to use within 24 hours of placement
- Similar patency to typical PTFE grafts
- No difference in complications
 - Infection, hematoma, pseudoaneurysm*, steal
- Useful for...
 - Avoiding catheter in urgent situations
 - Faster removal of catheters
 - Revising failing graft/fistula

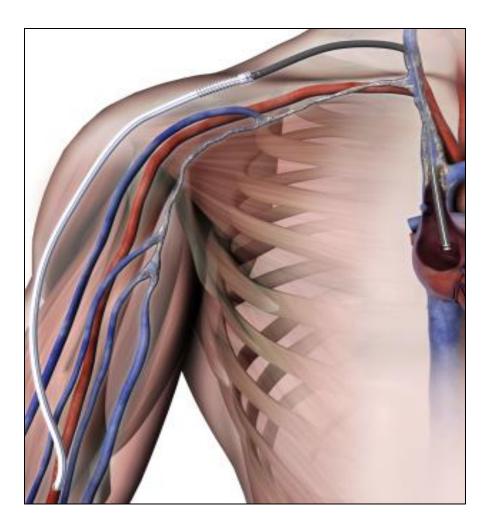
Early cannulation guidelines

(When used in first 2 weeks)

- Strict aseptic technique
 - Mask, sterile gloves, prep
- Small needles
 - -17g
- Lower blood flow rate
 - 200-300ml/min
- Hold pressure 10-15 minutes
- Lower or no heparin if immediately postop

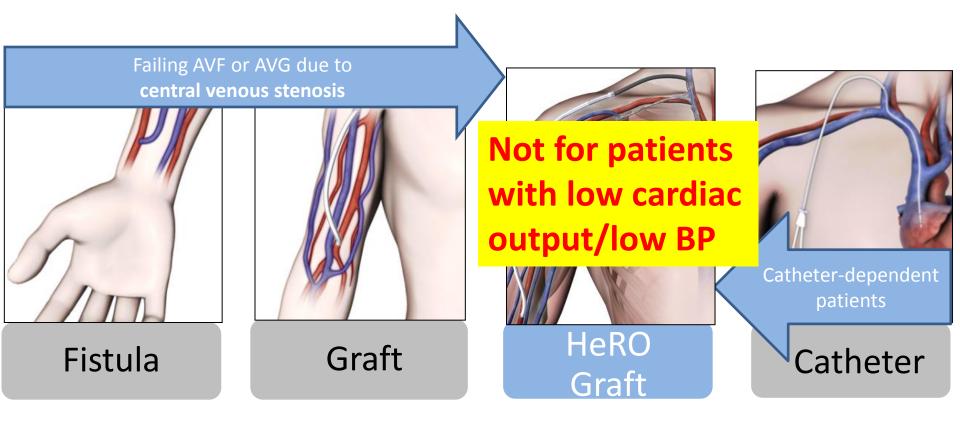
Differences in clinical use

- Physical exam
 - Markedly reduced thrill
 - Difficult to hear bruit
- Cannulation
 - Firmer "feel" so greater pressure required at entry
 - Enhanced "pop" into graft


Catheter Reduction Strategies

- Catheter avoidance
 - Timely placement of the "best" access
 - Urgent start PD
 - Early cannulation grafts
 - Gore accuseal
 - Atrium Flixene
- Catheter removal
 - Timely removal of the "worst" access
 - HeRO graft

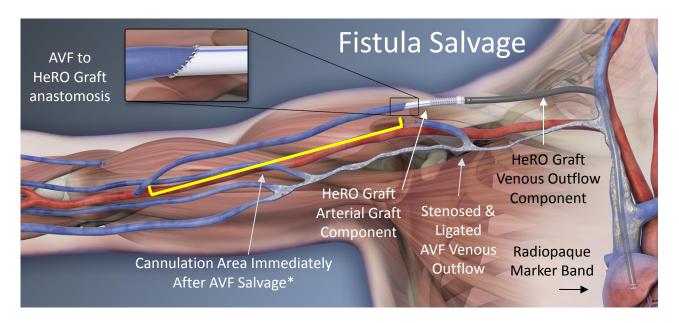
Removing Catheters

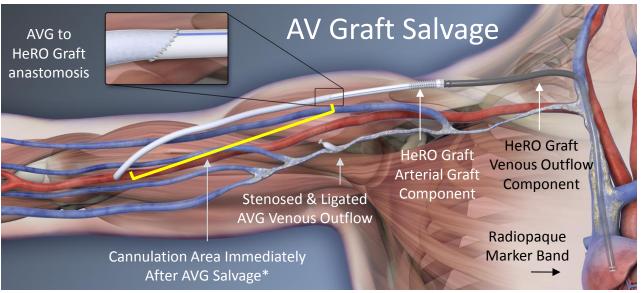


HeROTM Graft

Hemodialysis Reliable Outflow

Treatment Algorithm


HeRO Graft Candidates


- Failing fistulas or grafts due to central venous stenosis
- Catheter-dependent or approaching catheter-dependency

for Fistula or Graft Salvage¹

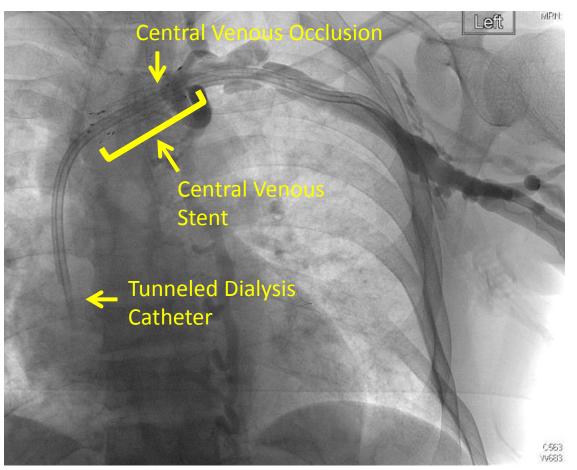
^{*}If AVF is matured or AVG is incorporated. Follow your dialysis facility protocol for care and cannulation. 1) HeRO Graft IFU, L7163

Clinical Outcomes

	HeRO Graft Gage, et al. EJVES ¹	HeRO Graft Patency Study ²	HeRO Graft Katzman, et al. JVS ²	Catheter Literature ²	AV Graft Literature ²
Bacteremia Rates (Infections/1,000 days)	0.14	0.18	0.70	2.3	0.11
Adequacy of Dialysis (mean Kt/V) ^β	NA	NA	1.7	1.29 - 1.46	1.37 - 1.62
Cumulative Patency at 1 Year	91%	88%	72% ^φ	37%	65%
Intervention Rate (per year)	1.5	1.7	2.5	5.8	1.6 - 2.4

Case Report

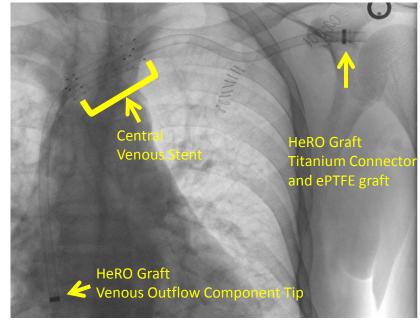
From Catheter to HeRO Graft


- A 50 year old African-American male with HIV and renal failure, and deemed "catheter-dependent."
- He has been on hemodialysis for over 10 years, and has had 3 failed fistulas and 3 failed AV grafts.
- Both arms have been deemed "exhausted" for use.
- He had 4 tunneled dialysis catheters (TDCs) total (2 on each side).

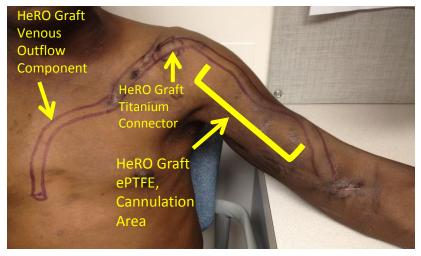
Case Report: Riley (part 2)

From Catheter to HeRO Graft

- His central venous system had occluded bilaterally.
- A left-sided
 brachiocephalic vein
 stent was placed 2 years
 ago to try to salvage a
 poorly functioning left
 upper extremity AVG.
- When that access failed, a TDC was placed through the stenotic stent.



Case Report: Riley (part 3)


From Catheter to HeRO Graft

 A HeRO Graft was placed via the existing TDC.

He is now using the HeRO
 Graft without difficulty, and
 his bridging femoral TDC was
 removed.

Above: Fluoroscopic image of HeRO Graft implanted through a stent

Above: Image of HeRO Graft after implantation

Summary

- Catheter use can be reduced drastically by utilizing several old and new strategies
 - Early referral for avf
 - Individualized selection of preferred access type
 - Efficient processes for following new accesses and removing catheters
 - Considering PD first
 - Utilizing early cannulation grafts, and HeRO graft when indicated